35#無縫鋼管S相滲層技術的意義
35#無縫鋼管具有良好的耐蝕性、優良的韌性和可加工性能,在許多領域獲得廣泛應用,但耐摩擦磨損性能較差、抗疲勞性能低,嚴重影響了不銹鋼零部件的使用壽命。
龍川金屬材料有限公司的試驗證明,35#無縫鋼管高溫滲氮后淬火,即在1050~1150℃的真空爐中使氮溶解在35#無縫鋼管的表層,然后快速冷卻下來,使氮化物來不及析出,從而可在工件表面形成含氮固溶強化的奧氏體滲氮層。高氮表面處理后,不僅提高了35#無縫鋼管表面的強度、硬度和耐磨性,且心部仍保持固溶處理的組織和性能。因為這種滲氮層的晶格參數與γ相不同,被稱之為“S相”。在S相中,氮原子固溶于奧氏體晶格內部,且抑制氮化鉻在晶界處析出,因此在不降低35#無縫鋼管耐蝕性能的前提下,顯著提高了35#無縫鋼管的表面硬度。由此發展起來的不銹鋼表面S相改性技術成為不銹鋼表面處理技術發展的重要里程碑。實驗證明,將含碳氣體代替氮氣引入離子處理的氣氛中,也能獲得一層類似于滲氮層的S相硬化層。
但是,中國市場傳統的滲氮、滲碳技術雖然提高了不銹鋼零件表面硬度、耐磨性和疲勞強度,但由于滲氮、滲碳溫度高,形成了氮化物和碳化物的沉淀相,犧牲了不銹鋼的耐蝕性。同時,由于不銹鋼表面形成一層致密的氧化膜,阻礙了氮、碳原子的滲入擴散。這些因素嚴重地制約了不銹鋼滲氮、滲氮表面處理技術的發展和推廣應用。
與傳統滲氮、滲碳技術不同,35#無縫鋼管S相滲層技術是一種低溫滲氮/滲碳技術。例如低溫離子滲氮技術,將滲氮溫度降低至450℃以下,滲入的氮形成固溶奧氏體,顯著提高了35#無縫鋼管的硬度,同時抑制滲氮過程中鉻的氮化物析出,保持了不銹鋼的耐腐蝕性能。低溫離子滲氮技術,可獲得幾十微米的單相含氮膨脹奧氏體相。低溫離子滲碳具有滲層均勻、韌性好、承載能力強、硬度梯度平緩、滲碳效率高等優點。另據報道,通過對不銹鋼表面進行氟化處理,消除表面的氧化膜,同時在試樣表面形成氟化膜,這種氟化膜提高了活性氮的吸附和擴散滲入,可使35#無縫鋼管的滲氮溫度降低到300℃。
滲氮35#無縫鋼管可提供一個較強的亞表層來支承干滑動時所形成的氧化膜,比未滲氮試樣能承受更高負荷。滲氮鋼的磨損是氧化磨損機制,而未滲氮鋼的磨損則是粘著和塑性變形機制。
35#無縫鋼管通過低溫滲氮/滲碳,獲得含氮/碳固溶飽和的擴散層,即S相滲層,不僅提高了不銹鋼表面硬度,而且還提高了不銹鋼的耐蝕性。例如,35#無縫鋼管在400℃、4h離子滲氮后,在5.5%NaCl溶液中的腐蝕電位提高了三倍,在3.5%的NaCl溶液中S相耐蝕性可以提高75%。低溫滲氮提高了不銹鋼的耐蝕性,因此延長了35#無縫鋼管的使用壽命,例如核反應堆35#無縫鋼管控制棒處理后壽命由一年延長至三年以上。
文章來源://jp-chudian.com